Two - Scale Convergence on Periodic

نویسنده

  • Alain DAMLAMIAN
چکیده

This paper is concerned with the homogenization of model problems in periodic porous media when important phenomena occur on the boundaries of the pores. To this end, we generalize the notion of two-scale convergence for sequences of functions which are deened on periodic surfaces. We apply our results to two model problems : the rst one is a diiusion equation in a porous medium with a Fourier boundary condition, the second one is a coupled system of diiusion equations inside and on the boundaries of the pores of a porous medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A non-periodic and two-dimensional example of elliptic homogenization

Background. When studying the microscale behavior (beyond the reach of numerical solution methods) of physical systems, one is naturally lead to the concept of homogenization, i.e., the theory of the convergence of sequences of partial differential equations. The homogenization of periodic structures using the two-scale convergence technique is well-established due to the pioneering work by Gab...

متن کامل

Two-scale Convergence on Periodic Surfaces and Applications

Abstract This paper is concerned with the homogenization of model problems in periodic porous media when important phenomena occur on the boundaries of the pores. To this end, we generalize the notion of two-scale convergence for sequences of functions which are defined on periodic surfaces. We apply our results to two model problems : the first one is a diffusion equation in a porous medium wi...

متن کامل

Two-Scale Convergence for Locally Periodic Microstructures and Homogenization of Plywood Structures

Abstract. The introduced notion of locally periodic two-scale convergence allows one to average a wider range of microstructures, compared to the periodic one. The compactness theorem for locally periodic two-scale convergence and the characterization of the limit for a sequence bounded in H1(Ω) are proven. The underlying analysis comprises the approximation of functions, with the periodicity w...

متن کامل

On Two-scale Convergence and Periodic Unfolding

Two-scale convergence is an important tool in homogenization theory. The contribution deals with various primary and adjoint (based on unfolding) approaches to the two-scale convergence and their pro-and-con.

متن کامل

Locally Periodic Unfolding Method and Two-Scale Convergence on Surfaces of Locally Periodic Microstructures

In this paper we generalize the periodic unfolding method and the notion of twoscale convergence on surfaces of periodic microstructures to locally periodic situations. The methods that we introduce allow us to consider a wide range of nonperiodic microstructures, especially to derive macroscopic equations for problems posed in domains with perforations distributed nonperiodically. Using the me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995